Category posts
Professions, skills, and teams
Editorial

Whether you’re hiring or trying to be hired yourself, the interview process is always a challenge. Here we present the typical flow together with revealing questions to help both interviewers and aspiring product managers.
(more…)Editorial

Where a product manager works affects their life, skills, and career. Startups and enterprises, i.e. large IT companies, are at opposite ends of the tech company spectrum, but they do have some things in common. Core product management skills are used in both environments, and both places have motivated, smart, and skilled professionals that want to help their customers. Both settings offer rich experiences that grow talent, however they differ in the types of skills that are most developed.
A startup teaches product managers how to move fast, tackle new problems, and wear many hats; an enterprise provides a chance to hone the product management craft and learn from successful experts in the field. Enterprises typically move slower than startups by design, and much of the extra time is spent communicating and negotiating with stakeholders. Because of the large user base, the impact of a product manager is usually broader than at a startup.
(more…)Editorial

While most product managers know that using data in their daily activities can have tremendous benefits, sometimes they find themselves in an environment where doing so is not easy. Perhaps they don’t have access to the data they need, the data is unreliable, or there is no support in place to incorporate data into their processes. These product managers are not in a data-driven culture.
A data-driven culture is when an organization embraces data to make decisions at all levels. The organization has the infrastructure and talent needed to collect, transform, and analyze data, along with reliable and trustworthy data sources. There is an importance on using data to support hypotheses and resolutions. Data-driven cultures embrace data and bake it into their everyday processes.
But a data-driven culture doesn’t just happen on its own. It needs both top-down and bottom-up support in the organization. Upper management must make the decision to invest in data and infrastructure while the teams must believe that using data in their daily jobs is beneficial. And while data enthusiasts in an organization can plant the seed, the entire organization’s support is needed for a data-driven culture to blossom.
(more…)Editorial

Approaches to product growth changed when growth hacking came onto the scene more than a decade ago. But like any influential concept, growth hacking has inspired criticism, diverse schools of thought, and more than a few misconceptions.
As we describe here, there is no authoritative, one-size-fits-all definition of growth hacking. But in the most general terms, it is a process aimed at communicating the key value of a product to the largest possible audience. These efforts span the entire product and marketing funnel and involve software engineers, designers, and analysts. A number of spin-off methodologies and frameworks have emerged containing many of the same principles.
(more…)Editorial

Many people have made a successful transition from an engineering career to a product management one. These two paths have a lot in common. They’re both focused on meeting customer needs and building great products. The two roles must work together to ensure the right solution is built. But of course there are differences. Product managers focus more on the “why” and the “what” while engineers focus on the “how.” Product managers uncover unmet customer needs and create a vision to address them, while engineering actually builds out that vision.
(more…)Editorial

As more companies aspire to be data-driven, the role of the data analyst is becoming crucial both to the organization and to product managers themselves. In fact, the World Economic Forum found that the data analyst/scientist role had the most increase in demand in 2020. Clearly these positions are incredibly needed.
What does a data analyst do? A data analyst is responsible for gathering, organizing, and interpreting data to provide business insight. Typically this insight is used to solve an issue, make a decision, or determine performance. Simply put, a data analyst interprets data to drive better business outcomes, which is exactly why product managers must collaborate with them effectively.
(more…)Editorial

Data is at the heart of product management: from forming and validating hypotheses to designing and running experiments to measuring the impact of product changes and understanding the market dynamics.
To find out more about the different aspects of data skills in product management, we spoke to experienced product managers from different companies and industries. Their comments will give you a good understanding of the following:
- What data skills are important for product managers and why?
- How do companies evaluate the data skills of people they want to hire for a PM position?
- How can you improve your data skills?
(more…)→ Test your product management and data skills with this free Growth Skills Assessment Test.
→ Learn data-driven product management in Simulator by GoPractice.
→ Learn growth and realize the maximum potential of your product in Product Growth Simulator.
→ Join our discussion on LinkedIn. New topics to talk about every week.
Editorial

In this blog post, we will look at professionals who switched from marketing to product management and what they learned on this journey.
Our partner Sean Ellis made a poll on LinkedIn to find out more about people’s experience in switching to product management. From this survey, we learned that most people came to product management from marketing, which turned out to be a great starting point.
(more…)Editorial
↓ This post is written by Eugene Kozlov who was head of analytics of Yandex.Taxi – the leading ride hailing service worth several billion dollars. In this article, Eugene demystifies analytics roles at companies by breaking them down into different levels and management roles. Hopefully, with this guide, you’ll be better positioned to evaluate your position as analyst and those of analysts you will be hiring and managing at your company.
In eight years of work in analytics, I have interviewed and hired hundreds of people and have a good idea of the ins and outs of the analyst market.
The key knowledge here is that this market practically doesn’t exist. In 2019, I hired 34 analysts for my team, 23 of whom (68%) were interns or juniors. I would have been happy to hire someone more experienced, but people of such level didn’t exist, so I had to hire people with potential and help them grow.
In comparison, we hired 23% junior team members (five people out of 22) for data engineering teams, so the market is there. Data engineering is common and well developed in banks, telecom, and retail, which means that there are more ready-made specialists in the market.
This essay serves two purposes.
First is to clarify the terms in which we think about the levels of analysts. This will reduce the existing entropy in the market, where an arbitrary set of expectations and skills can be hidden behind a job opening or an analyst’s CV, ranging from project management and systems analysis to automation of routine business operations. In this market environment such prefixes as junior/senior/leading carry no information at all.
The second purpose is to provide a clear roadmap for growth and development as a data analyst or a person who has to do the work of a data analyst but has a different title to make it more applicable to everyone. At Yandex.Taxi, we are forced to build a growth career ladder for our employees, because otherwise we won’t be able to cope with the demand. The very formalization of analysts’ levels described in this essay is a consequence of this approach. However, not everyone works in large companies, and not everyone has access to a strong mentor. So this essay aims to help such people take a look at their growth points and work on them.
→ Test your product management and data skills with this free Growth Skills Assessment Test.
→ Learn data-driven product management in Simulator by GoPractice.
→ Learn growth and realize the maximum potential of your product in Product Growth Simulator.
→ Join our discussion on LinkedIn. New topics to talk about every week.

Oleg Ya
When I worked at Facebook, the Workplace analytics team had a cool tradition: The team’s weekly meetings always started with a small data quiz.
The winner of the previous week’s competition would prepare a question about the product’s key metrics. For example, “what was last month’s MAU?” or “how many new users joined last week?” or “what proportion of the new companies reach 10 users?” or “what was last month’s revenue?” The question had one requirement: Its answer had to be found on the team’s dashboard.

The participants were to write down the answer without getting help from computers, which meant we could only use our memory to do so. The person whose answer was closest to the correct number got +1 point in the chart, and the person who was the farthest lost 1 point. Every six months, a winner was chosen and the game started again.
I participated in five seasons and won three of them. In one of the final rounds, I was tied with another analyst. The team arranged the final round, where we had to answer five questions in a blitz quiz. I managed to score the winning point and won the mug that you see in the photo below.
I told this story not because I wanted to brag about winning the quiz (well, this too, to be honest). In almost every quiz, the respondents’ guesses on metrics were distributed across a wide range, which I found surprising.
Why? Well, first of all, it was the analysts who played the game. They were the people who worked with data most of their time and should have been good at navigating it. Second, these analysts were working at Facebook, a company that has a very advanced and strong data culture. At Facebook, each team has clear goals, dashboards are available to all the company’s employees, and all meetings start with progress updates on key metrics. How could these people be so wrong in answering questions about the product they were working on?
If you decide to play this game with your company’s employees, you will most likely be as surprised as I was. It will turn out that most people have very vague ideas about the key metrics of your product and business. And some people will have no idea at all.
In this essay, we will discuss why it is important for team members to remember at least approximate values of the key product metrics, why this usually doesn’t happen, and how to get there.
→ Test your product management and data skills with this free Growth Skills Assessment Test.
→ Learn data-driven product management in Simulator by GoPractice.
→ Learn growth and realize the maximum potential of your product in Product Growth Simulator.
→ Join our discussion on LinkedIn. New topics to talk about every week.

Other content series
that you might find useful
- Addressing user pain points vs solving user problems better
- Product manager skills: evolution of a PM role and its transformation
- Product metrics, growth metrics, and added value metrics
- Customer retention levers: task frequency and added value
- How to measure the added value of a product
- Should a product be 10 times better to achieve product/market fit?
- Product/market fit can be weak or strong and can change over time
- Two types of product work: creating value and delivering value
- What is the difference between growth product manager, marketing manager, and core PM
- When user activation matters and you should focus on it
- User activation is one of the key levers for product growth
- The dos and don’ts of measuring user activation
- How “aha moment” and the path to it change depending on the use case
- How to find “aha moment”: a qualitative plus quantitative approach
- How to determine the conditions necessary for the “aha moment”
- Time to value: an important lever for user activation growth
- How time to value and product complexity shape user activation
- Product-level building blocks for designing activation
- When and why to add people to the user activation process
- Session analysis: an important tool for designing activation
- CJM: from first encounter to the “aha moment”
- Designing activation in reverse: value first, acquisition channels last
- User activation starts long before sign-up
- Value windows: finding when users are ready to benefit from your product
- Why objective vs. perceived product value matters for activation
- Slack vs Teams vs Workplace: the intriguing dynamics of the work messenger market
- How the “Slack vs Microsoft Teams” race evolves as the world switches to remote work
- How Revolut Trading was built. The importance of industry expertise and the balance of conservative and new approaches
- The values and principles of Wise. Key ideas from the Breakout Growth Podcast by Sean Ellis
- How to calculate customer Lifetime Value. The do’s and don’ts of LTV calculation
- How to calculate unit economics for your business
- Guide to ARPU: formula, calculation example, LTV vs ARPU
- Experiments where you make your product worse – the most underrated product manager tool
- Why your A/B tests take longer than they should
- Peeking problem – the fatal mistake in A/B testing and experimentation
- Mistakes in A/B testing: guide to failing the right way
- Designing product experiments: template and examples
- To reduce your product’s churn rate, first find out why users stay
- How to estimate the revenue, downloads and audience of a competitor’s app?
- What is product/market fit and how to measure PMF
- How engagement metrics can be misleading
- How to forecast key product metrics through cohort analysis
- Cohort analysis. Product metrics vs growth metrics
- Correlation and causation: how to tell the difference and why it matters for products
- How product habits are formed and what dopamine has to do with it
- Hook Model: encouraging a product habit to improve retention
- Not every product is habit-forming, but all products can have loyal users
- How to move from marketing to product management?
- Key data skills for product managers: experienced PMs sharing their thoughts
- Data mistakes to know and avoid as a product manager
- Data cherry-picking to support your hypothesis. What is it? Why is it bad?
- How can PMs encourage more teammates to use data?
- Metrics to focus on before and after product/market fit. How to better understand your product at different stages?
- How to establish effective collaboration between product managers and data analysts
- How to move from engineering to product management?
- Losing sight of real users and their needs behind the metrics. How can product teams avoid this?
- Quantitative vs qualitative data: what is the difference and when should you use one instead of the other
- Pros and cons of a data-driven culture
- Data-driven, data-informed, and data-inspired product decisions. What are the differences and when should you use each one?
- Using data to understand competitive and market dynamics
- Moving from a startup to an enterprise as a product manager
- The downsides of a data-driven culture
- Using data for strategic decisions
- How to increase the effectiveness of your product analysts
- Why every team member should know the key product metrics
- How to move from marketing to product management?
- Key data skills for product managers: experienced PMs sharing their thoughts
- Product manager skills: evolution of a PM role and its transformation
- What is the difference between growth product manager, marketing manager, and core PM
- How to move from engineering to product management?
- Product growth, reinvented: what growth hacking is (and isn’t)
- Moving from a startup to an enterprise as a product manager
- Product manager interview: real questions plus guide for employers and candidates
- Rolling retention, Day N retention, and the many facets of the retention metric
- Long-term retention—the foundation of sustainable product growth
- Errors in calculating ROI and unit economics. Impact of attribution models and incrementality on the ROI calculation of marketing channels
- Traffic attribution models. Why attribution models need to change along with growth channels, product, business objective and external environment